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Levels of Trace Metals in the Clam, Polymesoda solida
(Philippi, 1846) (Bivalvia: Cyrenidae), from the Strait of Lake
Maracaibo and Bahia El Tablazo, Venezuela?

Juan Sarria-Panasé?, Imar Mansilla-Rivera®, Marinela Colina*, and
Carlos J. Rodriguez-Sierra®

Abstract: This study determined concentrations of arsenic (As), cadmium (Cd), copper
(Cu), lead (Pb), selenium (Se), vanadium (V), and zinc (Zn) in the clam Polymesoda
solida, collected in nine different sites in the Strait of Lake Maracaibo and Bahia El
Tablazo, to assess the spatial distribution of metals, and the safety of clam consumption
by humans. Overall average concentrations + standard deviations in pg/g dw were 8.34 +
1.51 for As, 0.59 + 0.28 for Cd, 13.80 + 6.13 for Cu, 1.22 + 0.51 for Pb, 2.29 + 0.62 for
Se, 2.59 + 1.55 for V, and 24.70 + 4.98 for Zn. No distinct trend in the spatial distribution
of metals was observed, and levels in clams were below maximum permissible values for
seafood consumption. Positive correlations of V with Pb, and Cd suggest common
pollution sources, and their levels were comparable to other bivalve species from
contaminated aquatic systems.
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The Lake Maracaibo System (LMS) (which includes Lake Maracaibo, Strait
of Lake Maracaibo, and Bahia El Tablazo) is located approximately from 12° N
in the Gulf of Venezuela down to 8° N latitudes, and between 70° W and 73° W
longitudes. Lake Maracaibo, with an area of 12013 km?, connects to the estuary
of Bahia El Tablazo through the Strait of Lake Maracaibo (Avila et al. 2010).
Both, Strait and Bahia El Tablazo, contribute another 1090 km?to the LMS, for
a total area of 13103 km? (Avila et al. 2010). The LMS is considered one of the
largest oil-producing regions in Venezuela (Gundlach et al. 2001, Colina et al.
2005). The LMS has suffered from severe contamination problems caused by
excessive inputs of pollutants from petroleum-derived waste; riverine, and
agricultural sources; from treated and untreated domestic wastes, and industrial
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wastewaters (Gundlach et al. 2001, Avila et al. 2010, Corona-Lisboa 2013,
Marin-Leal et al. 2014). These anthropogenic activities in the lake and its
surroundings result in the release of harmful pollutants, such as metals, that may
reach the estuary of Bahia El Tablazo. Evidence of metal pollution has been well
documented in water, sediments, and biota of the LMS (Colina et al. 2005,
Salazar-Lugo 2009, Avila et al. 2010, Corona-Lisboa, 2013, Marin-Leal et al.
2014). Benthic organisms would be the most directly impacted in terms of
accumulation of metals from metal-contaminated aquatic environments (Gupta
and Singh, 2011). An important public health concern arises when these benthic
organisms contaminated with metals are consumed by humans. For instance,
metals like Pb and Hg are known neurotoxicants, while As has been associated
to various systemic effects (e.g., cardiovascular disease, skin disorders,
neurotoxicity), and cancer (Liu et al. 2008). Cadmium has been associated with
nephrotoxicity (Liu et al. 2008). The determination of metal pollution levels in
benthic organisms, known as biomonitors, has been widely used to assess the
degree of contamination in aquatic systems and the risks to public health
(Rainbow 1995, Burger and Gochfeld 2006, Gupta and Singh 2011).

The benthic mollusk Polymesoda solida (Philippi, 1846) (Bivalvia:
Cyrenidae) has a biogeographical range extending from Belize (east coast of
Central America) through the Orinoco River (North coast of South America)
(Severeyn et al. 1994). According to the World Register of Marine Species
(http://www.marinespecies.org/index.php), the currently accepted name of P.
solida (Figure 1) is Polymesoda arctata (Deshayes, 1854) (Bivalvia:
Cyrenidae) (Bouchet 2015). However, to provide consistency and to facilitate
the comparison with other studies, we retained the use of P. solida, as proposed
by Severeyn et al. (1994).

Figure 1. The clam Polymesoda solida (Philippi, 1846) (Mollusca: Bivalvia: Cyrenidae).
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This clam species is tolerant to variable salinity values, and it lives buried
preferably in fine sandy sediments of the intertidal zone of estuaries, or in
muddy anoxic sediments of mangrove roots (Severeyn et al. 1994). Polymesoda
solida, commonly distributed through the LMS, is an important subsistence and
commercial bivalve mollusk harvested in Venezuela, as well as in other
countries like Colombia, for human consumption (Sarcos and Botero, 2005, De
La Hoz-Aristizabal, 2010). Metal pollution in this bivalve species has not been
extensively studied. Only one recent published study reported metal levels in P.
solida focusing in Cd and Pb (Marin-Leal et al. 2014). Therefore, P. solida
could serve as an ideal indicator species of metal pollution in the LMS,
especially in Bahia El Tablazo. The objectives of this study were to determine
the spatial distribution of metal concentrations (specifically for As, Cd, Cu, Pb,
Se, V and Zn) in the clam P. solida, which can be used for future comparisons
and/or monitoring studies in the LMS, and to compare metal levels in clams to
permissible values for seafood consumption in order to evaluate potential human
health impacts.

Methods

Polymesoda solida clams, buried in surface bottom sediments, were
collected by hand, using powder-free rubber gloves, on March 2006, from nine
different sites: two in the Strait of Lake Maracaibo (Isla Dorada and Punta de
Leiva) and seven in Bahia El Tablazo, Venezuela (Figure 2). Clams from each
site were placed in plastic bags and stored in an ice-box (< 5°C) for
transportation. Then, they were washed with distilled deionized water (ddw),
temporarily stored in a freezer, and later shipped frozen to the Laboratory of the
Department of Environmental Health of the University of Puerto Rico. Clams
were measured in length and weighed. Soft tissues were removed using Teflon-
coated spatulas and plastic tweezers, and washed with ddw to discard any
sediments associated with it. Excess ddw was removed with Kimwipes
(Kimberly-Clark, Roswell Georgia, USA). In order to obtain sufficient clam soft
tissue for metal analyses, a composite of each sampling site, consisting of an
average of 10 clams (6-12) per site, was placed in a pre-weighed 250 mL beaker,
and oven-dried at 60°C, until constant weight. Each dried tissue composite
sample was homogenized using a ceramic mortar and pestle, and transferred into
plastic bags.
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Figure 2. Sampling sites in the Strait of Lake Maracaibo and at the Bahia El Tablazo in
Venezuela. 1 = El Mojan; 2 = Isla de Toas; 3 = Isla de San Carlos; 4 = Playa Apuz; 5 =
Punta de Palmas-I; 6 = Punta de Palmas-I1; 7 = Los Jobitos; 8 = Isla Dorada; 9 = Punta de
Leiva. Satellite image generated by the USGS Earth Resources Observation and Science
(EROS) Center. For geographical context, larger insert includes portions of northern
Venezuela and Colombia; smaller insert, portions of The Americas. Attribution of inserts:
By No machine-readable author provided. NormanEinstein assumed (based on copyright
claims). [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0
(http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons. URL of
insert: https://upload.wikimedia.org/wikipedia/commons/c/c9/Lake Maracaibo_map.png .
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The digestion of approximately 0.5 g dry weight (dw) of each composite
homogenized clam tissue sample per site was conducted in duplicates in a
mixture of 2 mL ddw with 5 mL HNO3; (CEM Corporation 1996, Pérez et al.
2001). Acidified samples were digested in a Model 1000 CEM microwave oven
(CEM Corporation, Matthews, North Carolina, USA) for 32 min and digested
again with 2 mL of 30% H,O, for an additional 10 min (CEM Corporation,
1996). Samples were then filtered using Whatman 41 paper-filters, diluted to 50
mL with ddw, and transferred to 50-mL polypropylene tubes (Corning
Incorporation, Corning, New York). Metals were analyzed using a Perkin Elmer
Atomic Absorption Spectrometer (AAS) Model AAnalyst 800 (Pérez et al.
2001). Average metal concentrations (n = 2) were calculated from each
composite homogenized sample site (except for site 7, n = 1). Quality control
(QC) included the standard reference material (SRM) 1566b-Oyster tissue
(National Institute of Standards and Technology, Gaithersburg, Maryland,
USA), and spiked blank solution (9 mL aqueous HNOj3 digestion solution in the
absence of clam tissue) samples to determine percent recoveries and evaluate the
analytical method. The minimum correlation coefficient of the AAS calibration
curve accepted was 0.995. Statistical analyses were performed using STATA™
v. 12.0 (StataCorp, College Station, Texas, USA). Kruskal-Wallis nonparametric
tests (y% statistic) were used to determine spatial differences in metal
concentrations, while Spearman correlation analyses were conducted to
determine relationships between metal concentrations.

Results and Discussion

The overall average percent water content for clams was 88.0 + 1.2%, while
the remaining average 12% represents the solid tissue material. The overall
average size length and weight + sd for clams analyzed were 30.8 + 4.0 mm and
1.38 £ 0.23 g wet weight, respectively. Percent recoveries for all metals from
triplicate spiked blanks were above 90%, while average percent (%) recoveries +
standard deviation (sd) (n = 4) from the SRM 1566-Oyster tissue samples were:
85.8 + 3.1 for As, 86.5 + 4.2 for Cd, 90.3 + 2.8 for Cu, 91.6 + 6.2 for Pb, 80.5 +
0.8 for Se, 93.2 + 9.7 for V, and 95.0 + 0.9 for Zn. Satisfactory recoveries
(>80%), as well as precision (relative standard deviations < 10%), were obtained
by the microwave digestion method used for the oyster SRM.

Overall average metal concentrations showed a large degree of spatial
variability, as shown by the large coefficients of variation (CV) (18.1% to
59.8%) (Table 1). Despite this heterogeneous spatial distribution, none of the
sampling sites obtained the highest concentration for more than two different
metals (Table 1). There were significant (p < 0.05) inter-spatial differences for
Cd and Cu, while the rest of the metals showed moderately significant (0.047 <
p < 0.080) locational differences (Table 1).
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For As, the highest average concentration in P. solida clam was obtained in
Punta de Palmas-1l (10.04 pg/g dw) (Table 1). The lowest average level of As
recorded was in Playa Apuz (5.96 ug/g dw), followed by Isla Dorada (6.29 ug/g
dw). In comparison to other studies, the overall average concentration of As in
P. solida was similar (less than two-fold differences) to levels observed in other
three different species of bivalve, Brachiodontes exustus (Linnaeus, 1758;
Mytilidae) (Sastre et al. 2015), Mercenaria mercenaria (Linnaeus, 1758;
Veneridae) (Trocine and Trefry 1996), and Ruditapes philippinarum (Adams
and Reeve, 1850; Veneridae) (Haiging et al. 2009) (Table 2).

The highest concentrations of Cd were obtained in clam tissues from Los
Jobitos (1.56 pg/g dw), whereas the lowest was measured in clams from Punta
de Palmas-Il (0.26 pg/g dw) (Table 1). Marin-Leal et al. (2014) collected P.
solida from eleven sites in the Lake Maracaibo System. Although they reported
higher average levels (0.963 ug/g dw), Cd was not detected in clams from six
sampling sites within the Strait and Bahia El Tablazo that included ElI Mojéan,
Playa Apuz, and Las Palmas (area of Punta de Palmas). Marin-Leal et al. (2014)
showed only one sampling site located in the south east side within the Lake
Maracaibo that exhibited a higher Cd concentration (1.267 ug/g dw) in P. solida
than our overall average value of 0.59 pg/g dw (Table 2). Our study detected
Cd in P. solida in all sampling sites (Table 1). The overall average level of Cd in
P. solida was three to five-fold higher than levels reported for other bivalves
from Puerto Rico (Table 2). Comparable levels were observed with bivalves like
Corbicula fluminea (O. F. Midiller, 1774; Cyrenidae) (Ruelas-Inzunza et al.
2009), M. mercenaria, Isognomon alatus (Gmelin, 1791; Pteriidae; Jaffé et al.
1998), and R. philippinarum (Table 2). However, when compared to Tivela
mactroidea (Born, 1778; Veneridae) (Alfonso et al. 2005), Polymesoda
caroliniana (Bosc, 1801; Cyrenidae) (Ruelas-Inzunza et al. 2009), and Perna
viridis (Linnaeus, 1758; Mytilidae) (Lemus et al. 2010), average levels of Cd in
P. solida were about two-fold lower (Table 2).

Average levels of Cu were higher in clams from Isla Dorada (24.99 ug/g
dw) and Punta de Leiva (21.67 pg/g dw), both sites from the Strait of Lake
Maracaibo, possibly reflecting the proximity to urbanized land such as
Maracaibo city that covers the western shore of the Strait (Figure 2). Isla de San
Carlos in Bahia El Tablazo exhibited the lowest average Cu concentration (8.63
Mo/g dw) (Table 1). Polymesoda solida exhibited higher overall average Cu
concentrations in comparison to Mytilopsis domingensis (Récluz, 1852;
Dreissenidae) (Pérez et al. 2001), P. caroliniana, C. fluminea, P. viridis, and R.
philippinarum (Table 2). The overall average Cu concentration observed in P.
solida was similar to levels measured in B. exustus and M. mercenaria, but two-
fold lower when compared to I. alatus (Table 2).
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The highest average Pb concentration in P. solida corresponded to EI Mojan
(2.47 pg/g dw) (Table 1). This highest value differed from average levels
detected in the other sites (0.87 - 1.33 pg/g dw), which were similar to the
lowest level obtained of 0.80 ug/g dw in Punta de Palmas-I. Marin-Leal et al.
(2014) reported average Pb concentrations in P. solida collected in the Lake
Maracaibo System that were six-fold higher than the overall average Pb level in
P. solida from the current study (Table 2). However, in their study, Pb was not
detected in EI Mojan, while P. solida in Playa Apuz showed similar average Pb
concentrations (about 1 pg/g dw) (Marin-Leal et al. 2014). They attributed the
higher Pb concentrations in P. solida collected within the Lake Maracaibo to the
extraction activities of petroleum (Marin-Leal et al. 2014). In comparison to
other species of bivalves, P. solida showed comparable levels with P.
caroliniana, and R. philippinarum (Table 2). Higher Pb levels in P. solida were
observed when compared to M. domingensis, B. exustus, C. fluminea, P. viridis,
and I. alatus (Table 2). In comparison to M. mercenaria, P. solida exhibited
about three-fold lower Pb concentrations (Table 2).

Clams collected from Isla de San Carlos had higher average Se
concentrations (3.71 pg/g dw) in comparison to the rest of the sampling sites
(Table 1). The site with the lowest average concentration was Punta de Leiva,
with 1.74 pg/g dw (Table 1). The comparison of Se levels with other
investigations was limited to studies reported from Puerto Rico and USA (Table
2). Overall average Se concentrations in P. solida were similar to levels reported
for B. exustus, but lower than M. domingensis (Table 2). When compared to
levels reported in M. mercenaria, P. solida obtained about three-fold higher
average Se concentrations (Table 2).

There was a 5-fold difference between the highest (4.98 ug/g dw) and the
lowest (0.99 pg/g dw) average concentration of V, corresponding to EI Mojan
and Punta de Palmas-I, respectively (Table 1). Another site with similar V levels
to El Mojan was Isla de San Carlos with 4.48 ug/g dw (Table 1). In comparison
to other bivalves, P. solida showed higher average V concentrations than
Saccostrea cucullata (Born, 1778; Ostreidae) collected from an oil production
zone in Iran (Moradi et al. 2011), and M. mercenaria from the USA (Table 2).
Average levels of V in Mytilus edulis (Linnaeus, 1758; Mytilidae) and
Crassostrea gigas (Thunberg, 1793; Ostreidae) from France (Chiffoleau et al.
2004) displayed almost two-fold lower concentrations than P. solida (Table 2).
After the “Erika” shipwreck, resulting in fuel oil contamination in the Bay of
Biscay, France, V increased to maximum levels of 4.6 and 3.2 pg/g dw in M.
edulis and C. gigas, respectively (data not shown on Table 2) (Chiffoleau et al.
2004). Alfonso et al. (2005) reported that the highest average level of V
observed in T. mactroidea (3.78 pg/g dw) from six sampling sites along the
coast of Venezuela was associated to the presence of petroleum refining and
transportation activities. The higher levels of V in bivalves from France and
Venezuela, obtained as a result of fuel oil contamination and proximity to oil
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producing activities, are comparable to values obtained in P. solida in sites like
El Mojan and Isla de San Carlos (Tables 1 and 2).

Clams from most of the sites had similar average concentrations of Zn
(Table 1). The only exception were clams collected from Isla Dorada, where the
highest Zn concentration (36.74 pg/g dw) was measured (Table 1). Most
probably, this metal is partially regulated by this bivalve organism, as it has
been observed with other bivalve species (Rainbow 1995, Alfonso et al. 2005).
Average Zn concentrations were similar to P. viridis (Table 2). Most other
bivalves (except I. alatus from VVenezuela) exhibited higher Zn levels (Table 2).

Spearman correlation analyses between every possible pair of metals are
shown on Table 3. We obtained a significant negative correlation between V
and Zn. This negative relationship between V and Zn suggests a different source
for Zn or dissimilar metal uptake/control mechanisms. In contrast, V exhibited
significant positive correlations (p < 0.05) with Cd, Pb, and Se. The positive
relationship between metals in P. solida could be due to similar metal uptake
mechanisms, and sources (natural and/or anthropogenic) (Preston et al. 1972,
Phillips 1976, Broman et al. 1991). In the LMS, the presence of metals like V,
Pb and Cd has been associated with anthropogenic sources such as petroleum-
related industrial activity zones (Colina et al. 2005, Salazar-Lugo 2009, Avila et
al. 2010, Marin-Leal et al. 2014). Also, the extraction of petrochemical products
is a well-known anthropogenic source of metal contamination, particularly for
V, to the LMS as well as to other marine systems (Chiffoleau et al. 2004,
Alfonso et al. 2005, Colina et al. 2005, Moradi et al. 2011). Petroleum refinery
effluents are also known sources of Se (Reyes et al. 2009). In addition to urban
run-off, other potential sources of metal pollution in LMS include petroleum and
chemical industrial activities (Figure 2), spillage from ocean-going ships, and
waste discharges from mining activities that are transported into tributaries of
LMS (Colina et al. 2005, Salazar-Lugo 2009, Avila et al. 2010).

In this study, no distinct trend in the spatial distribution of metals was
observed. However, clams from ElI Mojan exhibited the highest and second
highest average metal concentrations for most metals (e.g., V, Pb, Cd, Se).
Metal levels on this site could be influenced by the proximity to the outlet of the
Limon River (Figure 2), which receives waste discharges from coal-mining
activities (Avila et al. 2010), a potential metal pollution source to P. solida.
Polymesoda solida from Punta de Palmas (I and 1) showed lower average levels
of metals such as Cd (0.26-0.43 ug/g dw), Pb (0.80-0.87 ug/g dw), and V (0.99-
1.21 pg/g dw) (Table 1). A more recent study reported elevated average Pb
concentrations (about 3 pg/g dw) in P. solida collected in the area of Punta de
Palmas (identified as Las Palmas by the authors) in Bahia El Tablazo (Marin-
Leal et al. 2014). Marin-Leal et al. (2014) described the LMS as a highly
complex aquatic system due to its diverse anthropogenic activities occurring
within and around its watershed. These diverse sources might contribute to a
marked variation (spatially and temporally) in the concentrations of metals in
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this aquatic system with some metals reaching levels considered unsafe for
human consumption.

Table 3. Spearman’s correlation “rho” of metals (ug/g dw) in P. solida.

As Cd Cu Pb Se V

Cd -0.149

(0.556)
Cu 0.192 0.317

(0.445) (0.200)
Pb -0.280 0.539 0.129

(0.261) (0.021) (0.609)
Se 0.110 0.311 -0.364 0.209

(0.665) (0.209) (0.138) (0.405)
\Y -0.035 0.595 -0.262 0.554 0.601

(0.890) (0.009) (0.293) (0.017) (0.008)
Zn 0.281 -0.384 0.349 -0.074 -0.366 -0.593

(0.259) (0.116) (0.156) (0.769) (0.136) (0.009)
p-values in parenthesis; bold p-values in parenthesis < 0.05

In order to compare to maximum permissible levels (MPL) of metals in
seafood set by different regulatory agencies worldwide (Table 4), metal
concentrations at each site were converted to wet weight (ww) basis by
multiplying the average percent solid (12%) to the dw concentrations shown on
Table 1. No MPL was found for Se and V in seafood products. The range of
individual concentrations converted to pg/g wet weight (ww) were 0.70 - 1.23
for As, 0.03 - 0.19 for Cd, 1.0 - 3.0 for Cu, 0.07 - 0.30 for Pb, and 2.2 - 4.4 for
Zn. Except for As, the rest of the metals were lower than the MPL (Table 4).
Although As exceeded the FSANZ (2016) and BFL decree N° 685 MPL (Brasil,
1998) of 1 pg/g ww, this standard is for inorganic As and not total As (Whyte et
al. 2009) (Table 4). Our study only calculated total As, where a significant
fraction is considered to be non-toxic organic As (e.g., arsenobetaine) (Sirot et
al. 2009). Based on MPL values, concentrations of metals obtained in the clam
P. solida in this study did not represent a human health hazard. However, other
toxic chemicals (e.g. mercury), not included in our study, need to be considered
in future studies. In addition, Marin-Leal et al. (2014) reported higher
concentrations of Pb in P. solida (Table 2) in some sites in the LMS that
represented a health risk for human consumption.
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Table 4. Maximum permissible metal levels (ug/g ww) in seafood.

As Cd Cu Pb Se V Zn References
FAO/WHO - 1 - 2 - - - FAO/WHO (2000)
BFL 1 1 30 2 - - 50 Brasil (1965, 1998)
FSANZ 1 2 - 2 - - - FSANZ (2016)
CEC - 1 - 1 - - - Byrne (2001)

FAO = Food and Agriculture Organization/World Health Organization of the United Nations; BFL =
Brazilian Federal Legislation; FSANZ = Food Standards Australia New Zealand (specific for
molluscs); CEC = Commission European Community (specific for bivalve molluscs).

Although levels were below maximum permissible values for seafood
consumption, the clam P. solida from LMS showed the potential to accumulate
metals, thus becoming a useful indicator of metal pollution. Overall average
metal levels in P. solida exhibited the following general pattern: Zn > Cu > As >
V > Se >Pb > Cd. The diversity of metal-pollution sources (point and nonpoint
sources) throughout the LMS possibly explained the high spatial variability of
metal concentrations observed in P. solida in this study. Concentrations of some
metals like Cd, Pb, and V were generally comparable to metal levels detected in
other bivalve species from metal-contaminated aquatic systems such as M.
domingensis, T. mactroidea, P. caroliniana, R. philippinarum, and S. cucullata
(Table 2). It is known that metal accumulation in bivalves is species-dependent
(Rainbow, 1995; Gupta and Singh, 2011). Physiological properties such as
respiration, growth, and reproduction characteristics in bivalves are known to
affect metal bioaccumulation (Apeti et al. 2005; Narvédez et al. 2005). For
instance, Apeti et al. (2005) attributed a rapid increase of Cd and Zn in the
juvenile oyster Crassostrea virginica (Gmelin, 1791; Ostreidae) to higher
growth rates. Therefore, further studies are necessary to understand how the life
history (e.g., sex, growth, reproductive cycle), temporal variation in
environmental physico-chemical properties, and metal kinetics may influence
metal accumulation in P. solida from water and sediments, as it has been
observed for other bivalve biomonitors of metals (Rainbow, 1995; Gupta and
Singh, 2011). In conclusion, this study provided useful information on metal
levels in P. solida that can be used for future comparisons and/or monitoring
studies on metal pollution in the LMS, as well as in other biogeographic regions
where this bivalve species occurs.
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